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Abstract--The Coulomb--Navier failure criterion is applied to geological faulting in the general three- 
dimensional case of rocks containing arbitrarily oriented strength anisotropies and subject to non-Andersonian 
stress systems (i.e. with none of the principal stresses acting in a vertical direction). General expressions for the 
critical stress difference necessary to cause failure as a function of depth are given in terms of material 
parameters,  pore fluid pressure, orientation of the stress field and orientation of the strength anisotropy. The 
range of angles between a plane of anisotropy and the maximum principal stress direction, for which slip occurs 
along the pre-existing anisotropy rather than along a new fault, is calculated as a function of depth for different 
stress regimes. 

When the stress field is non-Andersonian and/or strength anisotropies not containing the intermediate stress 
direction occur in the rock, faulting generally is oblique-slip. A kinematic classification of faulting is given on the 
basis of the angle between the strike direction and the slip direction on the fault plane. Triangular diagrams, 
analogous to those used in petrology, are introduced to describe (i) faulting in isotropic rock subject to arbitrarily 
oriented stress fields, and (ii) faulting in anisotropic rock when one principal stress direction is vertical. The type 
of faulting as a function of stress field and anisotropy orientation can be read off directly from these diagrams. 

INTRODUCTION m 

SHEAR faulting in the upper lithosphere is usually de- 
scribed in terms of the Coulomb-Navier brittle failure 
criterion (see e.g. Jaeger & Cook 1969, Ranalli 1987, 
Mandl 1988). Assuming one principal stress direction to 
be vertical, Anderson (1905, 1951) used this criterion to 
account for the orientation of normal, strike-slip and 
thrust faults. Sibson (1974) derived expressions for the 
critical stress difference in the three standard faulting 
regimes on planes with negligible cohesion most favour- 
ably oriented for failure. Ranalli & Yin (1990) extended 
Sibson's analysis to rocks containing strength anisotro- 
pies (i.e. pre-existing planes of weakness), and derived 
expressions for the critical stress difference and orien- 
tation of faulting in the two-dimensional anisotropic 
case under Andersonian stress systems. 

Often, however, none of the three principal stress 
directions is vertical, i.e. the stress state is n o n -  

A n d e r s o n i a n  (see e.g. the analyses of stress distributions 
in crustal blocks by Hafner 1951, Sanford 1959, Yin 
1989, and the general discussion by Mand11988). Conse- 
quently, the problem arises of determining, given the 
orientation of the stress field, the critical stress differ- 
ence necessary for faulting in both isotropic and aniso- 
tropic rocks in the general case when the planes of 
weakness are not parallel to the direction of intermedi- 
ate stress, and the range of orientations (with respect to 
the principal stress system) for which faulting occurs on 
strength anisotropies rather than on new fault planes. 
This problem is addressed in this paper. The aim is to 
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Fig. 1. Traction vector t with its normal (o) and shear (r) components 
on the horizontal plane of unit normal m with respect to the principal 

stress directions. 

provide a simple extension of the Coulomb-Navier 
criterion which may be useful in the analysis of fault 
reactivation and tectonic inversion. We do not address 
the inverse problem, that is, the determination of the 
tectonic stress tensor from fault orientation and slip data 
(see e.g. Sassi & Carey-Gailhardis 1987, Crlrrier 1988). 
An attempt is also made at classifying oblique-slip fault- 
ing in terms of the orientation of principal stresses, 
strength anisotropies and slip directions. 

FORMATION OF NEW FAULTS IN ISOTROPIC 
ROCK 

In a Cartesian co-ordinate system xl, x 2, x 3 (corre- 
sponding to the direction of principal stresses t71, erE, a3, 
respectively), let m be the unit normal to the horizontal 
plane through the origin, where m i = cos ct i (i = 1, 2, 3), 
and a i  is the angle between the unit normal and the 
xraxis (Fig. 1). The traction vector t on the horizontal 
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Fig. 2. Critical stress difference vs depth for faulting in isotropic rocks in the cases of (a) no pore  fluid pressure  (,~ = 0) and 
(b) hydrostatic pore  fluid pressure  (2 = 0.4). Orientat ion of  the stress field: (A)  o3 vertical ( thrust  faulting); (B) a l  = 80 °, 
a2 = 60 °, ct, = 32°: (C) a~ = 60 °, a2 = 60 °, ct3 = 45°; (D)  c h vertical (normal  faulting). Parameters  are S = 75 MPa,  

i~ = 0.75, p = 2600 kg m - 3  and - ~ ,  

plane has components  (Jaeger & Cook 1969, p. 20, 
Mandl I988, p. 204): 

t I = - - o l m t .  t 2 = - - 0 2 m 2 ,  t 3 ~- - 0 3 1 7 1 3 "  

where signs have been chosen such that compressive 
stresses are positive, and the traction vector components  
are negative when pointing in the negative direction of 
the co-ordinate axes. The traction vector can be resolved 
into a normal and a shear component  (0- and r, respect- 
ively). The normal component  is the overburden press- 
ure 

~r = pgz(1 - 2), (1) 

where p is density, g acceleration of gravity, z depth, and 
2 the pore fluid factor (ratio of pore fluid pressure to 
overburden pressure). This component  can also be ob- 
tained from 

o = t - ( - m )  = olm~ + o2m ~ + 03m ~ (2) 

which, putting 0 : = 0 3 + d ( 0 1 - 0 3 ) ,  0 < d < l ,  and 
since m is a unit vector, becomes 

o = (rn~ + dm~)(o] - 03) + O3- (3) 

Comparing equations (1) and (3) one obtains for the 
maximum stress difference 

p g z ( 1 - 2 ) - o  3 
o l -  o3 - m~ + 6m~ (4) 

The Coulomb-Navier  failure criterion can be written 
as (Jaeger & Cook 1969, pp. 87-91) 

½(oi - 03) sin 20 

= S -t- t l [ ½ ( o  1 -I- 0"3) - ½(0-t - 0 3 )  c o s  20], (5) 

where S is cohesion,/~ the coefficient of steady sliding 
friction, and 0 the angle between the plane of failure 
(containing the 0"2,axis) and the 0"~ direction. Substitut- 
ing equation (4) in (5), and using the relation 

0 = ½ tan-~ (1//~), we  obtain the following relation that 
holds at failure 

2/apgz(1 - 2) + 2S 
o, - o 3 = (/x2 + 1) if2 - / x  + 2/x(m~ + 6m~)" (6) 

Equation (6) gives the critical stress difference for 
Coulomb-Navier  shear fracture in isotropic rock as a 
function of material parameters ,  depth and orientation 
of the principal stress field. The critical stress difference 
is shown in Fig. 2 as a function of depth for various 
orientations of the stress field and given values of 
material parameters.  

In the particular case when one of the principal stress 
directions is vertical (Andersonian stress state), we 
obtain the following relations for the three classical 
faulting regimes. 
Thrust 

(03 = o, ml = m:  = 0, m 3 = 1): 

ol - 03 = 2/xpgz(1 - 2) + 2S (7a) 
(/~2 + 1)1/2 _ / ~  

Normal  
(ol = or, mj = 1, m2 = tn3 = 0): 

24xpgz(t - 2) + 2S 
= (78) 0-1 --  03 (/~2 + 1)1/2 + kt 

Strike-slip 
( 0 2 = o , m l = m 3 = 0 , r n  2 =  l): 

2/xpgz(1 - 2) + 2S (7c) 
0-, - 03 = (1'2 + 1) !/2 + kt(Za - 1)" 

These equations, by introducing the principal stress 
ratio R = ol/o3, reduce to those derived by Sibson 
(1974) in the particular case S = 0, and by Ranalli & Yin 
(1990) for the more general case in which S ¢ 0. 

In many two-dimensional analyses of faulting (Hafner  
1951, Sanford 1959; Yin 1989), it is assumed that the 
o2-axis is horizontal, and the o~- and o3-axes vary with 
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Fig. 3. Strength anisotropy (plane ABC with unit normal n) referred 
to principal stress system ( x l , x 2 , x 3 ) .  T h e  orientation of the unit 
normal vector to the horizontal plane and the traction vector acting on 

the anisotropy are denoted by m and to, respectively. 

position (this is the case, for instance, that leads to listric 
normal and thrust faults; see also Mand11988). For such 
a stress state (rn2 = 0, ml ~ 0, m 3 7 ~ 0) equation (6) re- 
duces to 

2,upgz(1 - 2) + 2S (8) 
0"1 -- 0"3 = (/./.2 _1_ 1)1/2 +/~(2m 2 _ 1)" 

The critical stress difference required for failure 
depends on the orientation of the principal stress sys- 
tem, as the latter affects the normal stress on potential 
fracture planes. In order to predict occurrence and type 
of faulting, therefore, the determination of principal 
stress trajectories has to be followed by the determi- 
nation of the stress difference as a function of position 
(see the discussion by Buck 1990 and Yin 1990). 

SLIP ALONG PRE-EXISTING STRENGTH 
ANISOTROPIES 

where So,/to are cohesion and coefficient of friction 
along the anisotropy. (In general, both So and ¢t0 will be 
less than the corresponding values in isotropic rock. 
Although we choose p =/~0 in the examples that follow, 
all relations are of general validity.) The minimum stress 
0"3 can be expressed using equation (4) as 

0"3 = pgz(1 - 2) - (0"1 -- 0"3)(m~ + 6m~). (13) 

Using equation (13) in (12) yields 

0"1 --0"3---- 

po/V,z(1 - 2) + So 
[(n~ + d2n 2) - ( ~  + 6n~)2] 1/2 +p0[(m 2 + 6rn 2) - (~  + dn~)]" 

(14) 

Equation (14), which reduces to the Andersonian case 
of Ranalli & Yin (1990) if the plane of weakness contains 
the 0"2-axis and one of the principal stress directions is 
vertical, gives the critical stress difference for faulting 
along a strength anisotropy as a function of depth, 
material parameters, and orientation of stress field and 
anisotropy. Examples are given in Fig. 4 for various 
orientations of the anisotropy and different material 
parameters. 

At a given depth and for a given orientation of the 
stress field, faulting will occur along a plane of weakness 
only for a range of orientations, i.e. those for which the 
critical stress difference given by equation (14) is less 
than that given by equation (6). Outside this range, a 
new fault forms at an angle 0 = ½ tan-l(1/#) with respect 
to the 0",-axis and containing the 0"2-axis. By equating 
equations (14) and (6), the limiting angles can be ex- 
pressed as 

[n~ + 62n22 - (nl 2 + 6n2)2] 1/2 - / ~ o ( n  2 + ~n22) 

= P°[(1 +//'/2)1/2 - / " / ]  -t- ~/S0 - ~/0S (15) 

2,u f l (Ol  --  0"3)' 

Now we assume that the rock contains planes of 
weakness of orientation defined by the unit normal n of 
components n i = cos Yi, where 7i is the angle between n 
and the xraxis (Fig. 3). The traction vector to acting on 
the plane of weakness has components tm=-0 .1na ,  
/02 ----- --0.2n2, to3 = --0"3n3, and its magnitude is given by 

2 2 ~ n ] .  (9) = o~ln 2 + 0"2n2 + 

The traction vector can be resolved into a normal and 
shear component. The normal component, in a manner 
analogous to equation (3), can be written as 

0" = ( n2 + 6n2)(0"1 - 0"3) + 0"3. (10) 

The shear component can be obtained from the relation 
r2 = ~ _ 0"2 which, after some algebra, yields 

= (0", -- 0"3)[(nl 2 d- 62/l  2) - -  (n21 + 6n2)2] '12. (11) 

Thus the Coulomb-Navier criterion can be written as 

(0", - 0"3)[(n 2 + 62n 2) - (n21 + 6n2)2] u2 

= So + kto[( n2 + 6n2)(0"1 - 0"3) + 0"31, (12) 

where the stress difference (oa - 03) is given by equation 
(6). For a given component hi, equation (15) allows 
calculation of the ranges in the other two components 
consistent with faulting along pre-existing anisotropies. 
These reduce to the limiting angles given by Ranalli & 
Yin (1990) for anisotropies containing the o2-axis and 
vertical orientation of one of the principal stresses. 

A graphic representation of the limiting angles is 
obtained by using the three-dimensional Mohr circle 
(see e.g. Jaeger & Cook 1969, pp. 27-29). With refer- 
ence to Fig. 5, the three circles of radii ½(0.2- 03), 
½(O" 1 -- 0"3) and ~(0.1 --  0.2) represent the stress states o n  

planes with unit normal with components nl = 0, n2 = 0 
and n3 = 0, respectively, the other two components 
being arbitrary in each case. Concentric circles (of which 
only two families are shown in the figure, for simplicity) 
represent stress states on planes on which a component 
n i = cos )'i is fixed. The two failure envelopes shown 
apply to intact rock (parameters S, kt) and strength 
anisotropies (So, Po). If for instance 72 is given, one can 
immediately read off the range in Y1 for which a plane of 
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Fig. 4. Critical stress difference vs depth for faulting under  a stress system of orientat ion cq = 60 °, az = 60 °, a3 = 45 °. (a) & 
(b) and isotropic parameters  as in Fig. 2 .Anisot ropy parameters  N~ = 5 MPa,  #0 = ~- (A)  New fault in isotropic rock; (B) 
anisotropy with orientat ion }q = 55 °, y~ = 60 °, 73 = 50°; (C) anisotropy with orientation y~ = 70 °, y~ = 60 °, Y3 = 37°: (D)  

most  favourably or iented strength anisotropy (y~ = 90 ° - ½ tan ~ (1/~,~)~)'2 = 0). 
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Fig. 5. Three-dimensional  Mohr  circle tot  failure in isotropic rock (envelope a) and along s t rength anisotropy (envelope 
b). Dashed  circles concentric with full circle with diameter  a~ - 03 represent  stress states on  planes with fixed Y2; the o ther  
family represents  stress states on  planes with fixed y,. For  a given }'2, the range of y~ for which failure occurs along the 
anisotropy can be read from envelope (b). For  instance, for Y2 = 90°, the range of orientat ions is a ~ Yl -> b; for Y2 = 60°i 

c ~  Yl ->-- d; and, for72 = 45 °, e >~ y~ -> f. 

weakness fails. The range in Y3 can be calculated from 
the condition that n is a unit vector, or read off from a 
three-dimensional Mohr  diagram on which all three 
families of circles are drawn. Figure 6 gives some 
examples of limiting angles for failure along strength 
anisotropies as a function of depth for various values of 
material parameters  and orientation of the stress field. 
(Note that the limiting angle shown is the angle /3 
between the plane of weakness and the oFaxis, while Yl 
above is the angle between the normal to the plane of 
weakness and the ol-axis.) 

OBLIQUE-SLIP FAULTING 

When the stress orientation is Andersonian and the 
fracture plane contains the intermediate stress direction. 
faulting is of necessity either purely dip-slip or purely 

strike-slip, and oblique-slip faulting (that is, with motion 
direction on the fault plane which forms an angle differ- 
ent from either 0 ° or 90 ° with the strike direction) does 
not occur. However.  when restrictions on the orien- 
tation of both stress system and planes of weakness are 
dropped,  oblique-slip faulting becomes possible. On the 
assumption that the direction of maximum shearing 
stress and the direction of slip on the fault plane co- 
incide, we analvse in this section the general non- 
Andersonian case for anisotropic rocks (the Anderso- 
nian case has been considered by Bott 1959: see also 
Mandl 1988, pp. 203-206). 

With reference to Fig. 7. let h be the unit strike vector 
in the horizontal direction on the fault plane referred to 
Cartesian co-ordinates coinciding with the pr!ncipal 
stress directions. The maximum shear stress on the fault 
plane and its strike and dip components  are denoted by 
r. rh, and rd, respectively. The angle o) (measured in the 
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Fig. 6. Limiting angle fl between strength anisotropies and maximum principal stress (fl = 90 ° - ~z) vs depth for slip along 
the anisotropy. Values on curves denote the angle between anisotropy and intermediate principal stress. (a) 03 vertical, 

)~ = 0; (b) o3 vertical, 2 = 0.4; (c) al = 60 °, a2 = 60 °, a3 = 45 °, 2 = 0. Parameters as in Fig. 4. 
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Fig. 7. Resolution of shear stress ~" on fracture plane with normal n in 
the principal stress system with axes (Xl, x2, x3) with respect to the 
vertical m. The horizontal unit vector (along strike) is h. The strike and 
dip component of shear stress are rh and td, respectively. The 'rake 
angle' to gives the orientation of ~- (and consequently of slip) with 

respect to the horizontal. 

fault plane)  giving the direction of  r ,  and therefore  the 
slip direction,  with respect  to strike, is the quant i ty  that  
we wish to express in terms of  the or ienta t ion o f  the 
stress system (defined by the unit vector  in) and the 
or ienta t ion o f  the fault plane (defined by the unit  vector  
n). We  call to the ' rake  angle '  of  slip. The  signs o f  rh and 
rd are defined so that,  if the unit  vector  n is upward ,  the 
leftward direction of  Zh and the upward  direct ion o f  Zd 
are positive (as in Fig. 7); if the vector  n is downward ,  
the leftward direct ion of  rh and the downward  direct ion 
of  rd are positive. It  follows that  0 - < n i - <  1 and 
- 1  -< mi -< I in each case. 

Since the unit vector  h is perpendicular  to bo th  n and 
m we can write 

h l n  1 + hEn2 + h3n 3 = 0 

h i m  I + h2m 2 + h 3 m  3 = 0 

h 2 + h 2 + h 2 = 1 

f rom which we obtain 

h i =  
m3n2 - m2n 3 

[(m3n 2 - m2n3) 2 + (mln 3 - m3nl) 2 + (m2nl - mln2)2] 1/2 

(16a) 

h 2 = 
rain 3 - m3n 1 

[(m3n2 -- m2n3) 2 + (mln3 -- m3nl) 2 + (m2nl -- mln2)2] it2 

(16b) 

h 3 = 
m2n~ - minE 

[(m3n 2 -- m2n3) 2 + (mln3 -- m3nl) 2 + (m,2nl - -  mlrb2)2] 1/2" 

( l a 0  

The  strike c o m p o n e n t  of  the max imum shear  stress is 
given by r h = t 0. h, where  to is the t ract ion vector  acting 
on the fracture plane;  that  is 

• Kh = - O l n l h  1 - 0.2n2h2 - o3n3h 3 

and,  using equat ions  (16) and the identi ty 1 2 =  

0"3 + 6(0"1 -- 03), 

(a  1 -- a3)[ ( n l  n3m 2 -- nl n2m3) -- b(  n2n3m 1 - nln2m3) ] 

T h = [(m3n2 -- m2n3) 2 + (mln 3 -- m3nl) 2 + (m2nl - -  m l n 2 ) 2 ]  1/2" 

(17) 

The  dip c o m p o n e n t  is re lated to max imum shear  stress 
and strike c o m p o n e n t  by the relat ion r E = r 2 - ~ .  
Recall ing equa t ion  (11) we can write 

I'd = + ( a l  -- 0"3) {( n2 + bZn2) - ( n2 + dn2) 2 - 

[nln3m2 - n l n 2 m s  - d(n2n3ml  - n lnzms ) ]  2 / u2 

( m 3 n z  - m2n3) 2 + ( m l n 3  - m 3 n l )  2 + (m2nl  - m l n z )  2J " 

(18)  

Unlike  equat ion  (17), which gives both  the magni tude  
and the sign of  ~h, equat ion  (18) gives only the magni-  
tude o f  ~d. The  sign o f  rd can be de te rmined  by the 
p roduc t  of  the cosine of  the angle be tween  ~" and m and 
the cosine o f  the angle be tween  n and m, i.e. 

cos ('r, m) cos (n, m) = 

(n 2 + b n Z ) ( n l m l  + n2m 2 + n3m3) 2 
- -  (n lm 1 + 6 n 2 m z ) ( n l m  I + n2m2 + n3m3) 

[(n 2 + 6 2 n  2) - (nl 2 + (~n22)2] 1/2 (19) 

If  cos (~r, m) cos (n, m) --< 0, ro in equat ion  (18) takes the 
plus sign; otherwise it takes the minus sign. 
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Fig. 8. Kinematic classification of faults based on the angle ~o between 
the direction of slip and the horizontal. Purely normal, thrust and 
strike-slip faults are denoted by N. T and S. respectively. Combi- 
nations of letters denote oblique-slip faulting, with the first letter 
referring to the predominant component of slip. Subscripts L and R 

denote left-lateral and rightqateral slip. respectively. 

The rake angle is therefore given by 

tan ~o - Td  - -  

Th 

[[(n 2 + 62n 2) - (n~ + dnZ)Z][(m3n2 - mzn3)  2 

+ J' _ _  +_ (_m,n3 - m_3nt) 2 + (m2nj  - mlnz)2J _ 

[ [n 'n3m2 - n ln2m3 - 6 (n2n3m,  - n ,n2m3)]  2 

1 / 2  

1 

(20) 

The value of the rake angle depends on the signs 
of rh and rd. For r h > 0, r d > 0. 0 ° <: m < 90°: 
for rh--<0, r a > 0 ,  90 ° - < ~ o <  180 ° for r h < 0 .  
r a - 0 ,  180 ° -<~z)<270°;  and for rh-->0, ra < 0 .  
270 ° --< ~o < 360 ° 

Equations (17), (18) and (20) give the strike com- 
ponent,  the dip component  and the rake angle of the 
maximum shear stress (and consequently the motion 
direction) on the fault plane, for any orientation of stress 
system and fault plane. Pure dip-slip and pure strike-slip 
faulting are particular cases, depending for their occur- 
rence on the vertical orientation of one principal stress 
and either the absence or a particular orientation (con- 
taining the ~r2-axis ) of  strength anisotropies. In all other 
cases, faulting is oblique-slip. 

A kinematic classification of faults, based on the value 
of the angle o9, is shown in Fig. 8. A similar classification, 
for the special case of Andersonian stress systems, has 
been given by Bott (1959), based on the relative values 
of principal stresses. 

E X A M P L E S  

In order to predict the possible types of faulting under 
given conditions, we consider different cases separately. 
For the f o r m a t i o n  o f  n e w  faul ts  in n o n - A n d e r s o n i a n  
stress s y s t ems ,  the fracture plane contains the intermedi- 
ate stress direction (n2 = 0), and n 2 + n 2 = 1 Under  
these conditions, equations (17), (18) and (20) reduce to 

m ~, 

/"%c', 
\ ' ~ . .  

N ... . . .  n o r m a l  fau l ts  

T .... thrust  faul ts  

S s t r i ke -s l ip  faul ts  

. . . . . .  norma l  and  th rus t  faul ts  

. . . . . .  s t r i k e - s l i p  a long  
dipping p lanes  

Fig. 9. Faulting regimes m lsotropic rock as a function of the orien- 
tation m of the stress system. In each field within the triangle, two 
conjugate sets of faults are possible as indicated. Normal, thrust and 
strike-slip faults of Andersonian type occur only at the vertices. For 
m2 = 0 (horizontal intermediate stress direction ] and mid-range values 
of rnj and rn3, normal and thrust faults can coexist in conjugate sets. 

Strike-slip along dipping planes can occur for a fixed mdm3 ratio. 

ndl3rnz(o~ - 03) (21a) 
r h -- [ ( r a i n3  m3t/1)  2 - m2] 1/2 

"~ ('m3n' mln3)nln3(fl;~n2]l/~3) (21b) 
r 0 = _  [(mln3 m 3 n j ) 2 +  

+m3nl - mdt3  
tan c9 = " (21c) 

?n-, 

By substituting the appropriate  value for the critical 
stress difference (i.e. equation 6 for the most general 
case), the strike and dip components  of the maximum 
shear stress on the fault plane can be expressed in terms 
of material parameters,  depth and orientation of the 
stress system. 

The type of faulting along new fracture planes as a 
function of the orientation of the stress system can be 
determined from equations (21a)-(21c). As m 2 + 
m 2 + m~ = 1. it is convenient to display the results on a 
triangular diagram, similar to the construction used in 
petrology, where the co-ordinates m 2 of any point are 
given by the distance from the side opposite to the 
vertex, where m/2 - 1. Figure 9 shows the different types 
of faulting in terms of the orientation of the stress 
system. Each point in the diagram represents two poten- 
tial conjugate fault planes, containing the intermediate 
stress axis and making an angle 0 = ½ tan -1 (1/~) with 
the maximum stress direction. Results are presented for 
the case where, on a stereographic projection, the prin- 
cipal stress axes. o~. o~, 03, are arranged in anticlock- 
wise order: if they are arranged in clockwise order the 
type of faulting does not change, but the sense of slip is 
reversed. Naturally, oblique-slip faulting is the rule. 
unless one principal stress direction is vertical or the 
o2-axis is horizontal. Also. pure strike-slip along dipping 
planes is possible. In situations where the orientation of 
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A - NSL /NSR ............ normal faults 
B -  S N L / S N  R . . . . . .  thrust faults 
C -  STL]  STR . . . . . . . .  strike-slip faults 
D -  T S L / T S  R • -- . . . .  strike-slip along dipping planes 

Fig. 10. Faulting regimes in rocks under  Andersonian  stress systems containing strength anisotropies as a function of the 
orientation n of the  anisotropy. (a)-(c) refer to different vertical principal stress. Calculations are for z = 10 km,  
S = 75 MPa,  So = 5 MPa,/z =/~0 = 0.75, p = 2600 kg m -3, 2 = 0.4 and ~ = ½. The  shaded areas denote values of n for which 
new faults (of the type appropriate to the vertical principal stress) form. Faulting along pre-existing planes of weakness,  with 

slip as shown,  occurs in the unshaded  areas. 

the stress system is known and the rock is isotropic, 
diagrams such as the one shown in Fig. 9, together with 
equations (21a)-(21c), allow the prediction of the fault 
plane orientation and slip direction. 

Next we examine the case of an Andersonian stress 
system in rocks containing strength anisotropies (also 
considered by Mandl 1988, pp. 203-206). Under these 
conditions, new faults are pure dip-slip or strike-slip, but 
oblique-slip faulting can occur along anisotropies if they 
are favourably oriented. Three different faulting 
regimes are possible. 

If Ol is vertical (ml = +1, m2 = m3 = 0), equations 
(17), (18) and (20) become 

= - (Oln  2 °3)t~n2n3ml 
+ n2)m (22a) Th 

tan co - +na[n~(1 - 6) + n~l (22c) 
~n2n 3 

Ifoz is vertical (ml = m3 = O, m2 = ___1), we have 

= (Ol(n 2 .  °3)nln3m2 
+ n2)V 2 (23a) T h 

rd = + ( o l -  °3)nz[n~(~)l/2 2 + dn2] (23b) 

tan to = +nz[n2(1 - 6) - dn 2] (23c) 
nln3 

Finally, if 03 is vertical (ml = m2 = 0, m 3 = _+1) 

r h  (O 1 - -  03)nln2m3(O - 1) 
= (n 2 + n2)1/2 (24a) 

- 03)n3(n 2 + dn22) 
rd = _+(00 ( n2 + n2) 1/2 (24b) 

tan to = _+n3(n2 + 6n2) (24c) 
n l n 2 ( 0  - -  1)  

The above relations reduce to those for normal, 
strike-slip and thrust faults, respectively, if faulting 
occurs along a new fracture plane (na = 0). However, 
oblique-slip faulting takes place if favourably oriented 
planes of weakness are present. The results can be 
presented on triangular diagrams with co-ordinates n/2. 
Figure 10 illustrates both the limiting angles for faulting 
along strength anisotropies and the faulting regimes. 
(Note that the latter do not represent conjugate sets as in 
the isotropic case, but favourable orientations of 
strength anistropy along which a given type of slippage 
would occur.) The limiting angles are a function of depth 
(see equation 15); z = 10 km is the case shown. Faulting 
along strength anisotropies does not occur in the shaded 
areas where new faults form (normal, strike-slip or 
thrust according to which principal stress direction is 
vertical). Pure dip-slip and pure strike-slip faulting can 
occur along strength anisotropies which contain the o1- 
or o2-axis. In all other cases, faulting is oblique-slip. It 
can also be seen that a broad range of orientation is 
suitable for extensional reactivation, while a more re- 
stricted range is suitable for reactivation in compression. 

Faulting in the most general case of non-Andersonian 
stress systems in rocks containing strength anisotropies 
can be predicted using the general equations (17), (18) 
and (20). However, the results cannot be simply pre- 
sented on triangular diagrams. 

CONCLUSIONS 

The widespread occurrence of oblique-slip faults and 
of faults having dip angles other than those predicted for 
'standard' stress states are indications of the existence of 
non-Andersonian stress systems and of fault reacti- 
vation. However, a general theory of faulting in aniso- 
tropic rocks under non-Andersonian stress systems has 
not been formulated so far. In this paper, we have 
provided simple expressions for the critical stress differ- 

SG 14:2-G 
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e n c e  fo r  C o u l o m b - N a v i e r  s h e a r  f r a c t u r e  in bo th  i so t ro -  

pic  rock  and  a n l s o t r o p i c  rock  as a f unc t i on  o f  m a t e r i a l  

p a r a m e t e r s ,  p o r e  f luid p r e s s u r e ,  d e p t h ,  o r i e n t a t i o n  o f  

t he  s t ress  field and  o r i e n t a t i o n  o f  a n i s o t r o p i e s .  T h e s e  

e x p r e s s i o n s  can  be  used  in s t ress  ana lyses ,  to c o m p -  

l e m e n t  t h e  c a l c u l a t i o n  o f  s t ress  m a g n i t u d e  and t ra jec -  

to r ies ,  in o r d e r  to assess  t he  l i k e l i h o o d  of  n e w  fau l t ing  

and  faul t  r e a c t i v a t i o n  in a g iven  t e c t o m c  e n v i r o n m e n t  

(see  e .g .  Y i n  1989. and  t h e  d i scuss ion  by B u c k  1990 and  

Yin  1990). 

A n  e x p r e s s i o n  has  also b e e n  g w e n  fo r  ca l cu l a t i ng  t h e  

l imi t ing  ang les  for  fa i lu re  fo r  a s t r eng th  a n i s o t r o p y  o f  

a r b i t r a r y  o r i e n t a t i o n  as a f u n c t i o n  o f  m a t e r i a l  para-  

m e t e r s ,  p o r e  f luid p r e s s u r e ,  d e p t h  and  o r i e n t a t i o n  o f  the  

s t ress  f i e ld .Th i s  e x t e n d s  t h e  p r e v i o u s  t w o - d i m e n s i o n a l  

t r e a t m e n t  by R a n a l l i  & Yin  (1990) ,  a n d  m a k e s  it poss-  

ible to e x t e n d  to  t h r e e  d i m e n s i o n s  t w o - d i m e n s i o n a l  

ana lyses  o f  faul t  r e a c t i v a t i o n  and  r o t a t i o n  (see  e .g .  

S ibson  1985. N u r  et al. 1986. 1989, Iv ins  et al. 1990). In 

this  r e spec t ,  it is i n t e r e s t i n g  to n o t e  tha t  t he  l i k e l i h o o d  o f  

r e a c t i v a t i o n  va r i e s  m d i f f e r e n t  t e c t o n i c  r e g i m e s .  

W i t h  r e spec t  to  o b l i q u e - s l i p  f au l t ing ,  expl ic i t  ex-  

p r e s s ions  h a v e  b e e n  g iven  fo r  d ip  and  s t r ike  c o m p o n e n t s  

o f  t he  m a x i m u m  s h e a r  s t ress  and  t h e  slip d i r e c t i o n  on  the  

fau l t  p l a n e ,  in t e r m s  o f  cr i t ical  s t ress  d i f f e r e n c e  ( tha t  is. 

m a t e r i a l  p a r a m e t e r s  and  d e p t h )  and  o r i e n t a t i o n s  o f  

s t ress  sys tem and  s t r e n g t h  a n i s o t r o p y ,  t h e r e b y  e x t e n d -  

ing  p r e v i o u s  ana lyses  by B o t t  (1959) and  M a n d l  11988). 

T h e s e  resul t s  h a v e  b e e n  s y n t h e s i z e d  g raph ica l ly  by 

m e a n s  o f  t r i a n g u l a r  d i a g r a m s ,  w h e r e  e x p e c t e d  t y p e  of  

f au l t ing  is g iven  as a f u n c t i o n  o f  s t ress  o r i e n t a t i o n  ( for  

n e w  f r a c t u r e s ) ,  o r  as a f u n c t i o n  o f  a n i s o t r o p y  o r i e n t a t i o n  

( fo r  slip a l o n g  p r e - e x i s t i n g  faul ts) .  A v a r i e t y  o f  t e c t o n i c  

e n v i r o n m e n t s ,  wi th  the i r  r e l e v a n l  f au l t i ng  p a t t e r n s ,  a re  

thus  a m e n a b l e  to  ana lys is  on  t h e  basis  o f  a s i m p l e  d i r ec t  

a p p l i c a t i o n  o f  t he  C o u l o m b - N a v i e r  c r i t e r ion .  
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