Journal of Structural Geology, Vol. 14, No. 2, pp. 237 to 244, 1992
Printed in Great Britain

0191-8141/92 $05.00+0.00
© 1992 Pergamon Press plc

Critical stress difference, fault orientation and slip direction in anisotropic
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Abstract—The Coulomb-Navier failure criterion is applied to geological faulting in the general three-
dimensional case of rocks containing arbitrarily oriented strength anisotropies and subject to non-Andersonian
stress systems (i.e. with none of the principal stresses acting in a vertical direction). General expressions for the
critical stress difference necessary to cause failure as a function of depth are given in terms of material
parameters, pore fluid pressure, orientation of the stress field and orientation of the strength anisotropy. The
range of angles between a plane of anisotropy and the maximum principal stress direction, for which slip occurs
along the pre-existing anisotropy rather than along a new fault, is calculated as a function of depth for different
stress regimes.

When the stress field is non-Andersonian and/or strength anisotropies not containing the intermediate stress
direction occur in the rock, faulting generally is oblique-slip. A kinematic classification of faulting is given on the
basis of the angle between the strike direction and the slip direction on the fault plane. Triangular diagrams,
analogous to those used in petrology, are introduced to describe (i) faulting in isotropic rock subject to arbitrarily
oriented stress fields, and (ii) faulting in anisotropic rock when one principal stress direction is vertical. The type
of faulting as a function of stress field and anisotropy orientation can be read off directly from these diagrams.

INTRODUCTION

SHEAR faulting in the upper lithosphere is usually de-
scribed in terms of the Coulomb-Navier brittle failure
criterion (see e.g. Jaeger & Cook 1969, Ranalli 1987,
Mandl 1988). Assuming one principal stress direction to
be vertical, Anderson (1905, 1951) used this criterion to
account for the orientation of normal, strike-slip and
thrust faults. Sibson (1974) derived expressions for the
critical stress difference in the three standard faulting
regimes on planes with negligible cohesion most favour-
ably oriented for failure. Ranalli & Yin (1990) extended
Sibson’s analysis to rocks containing strength anisotro-
pies (i.e. pre-existing planes of weakness), and derived
expressions for the critical stress difference and orien-
tation of faulting in the two-dimensional anisotropic
case under Andersonian stress systems.

Often, however, none of the three principal stress
directions is vertical, i.e. the stress state is non-
Andersonian (see e.g. the analyses of stress distributions
in crustal blocks by Hafner 1951, Sanford 1959, Yin
1989, and the general discussion by Mandl 1988). Conse-
quently, the problem arises of determining, given the
orientation of the stress field, the critical stress differ-
ence necessary for faulting in both isotropic and aniso-
tropic rocks in the general case when the planes of
weakness are not parallel to the direction of intermedi-
ate stress, and the range of orientations (with respect to
the principal stress system) for which faulting occurs on
strength anisotropies rather than on new fault planes.
This problem is addressed in this paper. The aim is to
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Fig. 1. Traction vector t with its normal (0) and shear (v) components
on the horizontal plane of unit normal m with respect to the principal
stress directions.

provide a simple extension of the Coulomb-Navier
criterion which may be useful in the analysis of fault
reactivation and tectonic inversion. We do not address
the inverse problem, that is, the determination of the
tectonic stress tensor from fault orientation and slip data
(see e.g. Sassi & Carey-Gailhardis 1987, Célérier 1988).
An attempt is also made at classifying oblique-slip fault-
ing in terms of the orientation of principal stresses,
strength anisotropies and slip directions.

FORMATION OF NEW FAULTS IN ISOTROPIC
ROCK

In a Cartesian co-ordinate system xy, x,, x5 (corre-
sponding to the direction of principal stresses o1, 05, 03,
respectively), let m be the unit normal to the horizontal
plane through the origin, where m; = cos ¢, (i = 1, 2, 3),
and a; is the angle between the unit normal and the
xraxis (Fig. 1). The traction vector t on the horizontal
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Fig. 2. Critical stress difference vs depth for faulting in isotropic rocks in the cases of (a) no pore fluid pressure (4 = 0) and
(b) hydrostatic pore fluid pressure (1 = 0.4). Orientation of the stress field: (A) o, vertical (thrust faulting); (B) a; = 80°,

=60°, o= 32%

plane has components (Jaeger & Cook 1969, p. 20,
Mandl 1988, p. 204):

t| = _01"11‘ tl = “Uzmz. t3 - _(}37’13.

where signs have been chosen such that compressive
stresses are positive, and the traction vector components
are negative when pointing in the negative direction of
the co-ordinate axes. The traction vector can be resolved
into a normal and a shear component (o and 7, respect-
ively). The normal component is the overburden press-
ure

o= pgz(l = 1), (1)

where pis density, g acceleration of gravity, z depth, and
A the pore fluid factor (ratio of pore fluid pressure to
overburden pressure). This component can also be ob-
tained from

0 =t-(—m) = o,m] + 015 + O3 (2)
which, putting o, = 03+ (o, ~ g3), 0<0 <1, and
since m is a unit vector, becomes

o= (mi + om3)(0, — 03) + 03. 3)

Comparing equations (1) and (3) one obtains for the
maximum stress difference

ng(l —A) 0y @)

Oy — Uy
m1 + 6m’)

The Coulomb-Navier failure criterion can be written
as (Jaeger & Cook 1969, pp. 87-91)

(o, — 0;)sin 26

=S+ uli(o; + 03) — 8(0) — 03) cos 28], (5)

where § is cohesion, u the coefficient of steady sliding
friction, and 6 the angle between the plane of failure
(containing the 0,-axis) and the o, direction. Substitut-
ing equation (4) in (5), and using the relation

(C) a; =60°, ar=60°, a; =45 (D) oy vertlcal (normal faulting). Parameters are S =75 MPa,
w=0.75 p=2600kgm*

and § =

6 = 4 tan"' (1/u), we obtain the following relation that
holds at failure
2upgz(l ~ 1) + 28

O~ 03 = (Mz 7 1)1/2 —u+ zlu(m% + 6m%) (6)

Equation (6) gives the critical stress difference for
Coulomb-Navier shear fracture in isotropic rock as a
function of material parameters, depth and orientation
of the principal stress field. The critical stress difference
is shown in Fig. 2 as a function of depth for various
orientations of the stress field and given values of
material parameters.

In the particular case when one of the principal stress
directions is vertical {Andersonian stress state), we
obtain the following relations for the three classical
faulting regimes.

Thrust
(oz=0,m =my=0,m3=1):
2upgz(l — ) + 28
O, — 03 = D" g (7a)
Normal
(oy=0,m =1,my =m;=0):
g upga(1=2) + 28
(e (qu ¥ 1)1/2 n P . (7b)
Strike-slip
(oy=0,m =my=0,m, = 1)
o, — 05 = 2upgz(l - 1) + 28 (7¢)

W+ D2+ u26 - 1)
These equations, by introducing the principal stress
ratio R = 0y/0;, reduce to those derived by Sibson
(1974) in the particular case § = 0, and by Ranalli & Yin
(1990) for the more general case in which S # 0.

In many two-dimensional analyses of faulting (Hafner
1951, Sanford 1959, Yin 1989), it is assumed that the
0,-axis is horizontal, and the o;- and o0z-axes vary with
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X2

Fig. 3. Strength anisotropy (plane ABC with unit normal n) referred

to principal stress system (xj, x;,x3). The orientation of the unit

normal vector to the horizontal plane and the traction vector acting on
the anisotropy are denoted by m and t;, respectively.

position (this is the case, for instance, that leads to listric
normal and thrust faults; see also Mandl 1988). For such
a stress state (m, = 0, m; # 0, m; # 0) equation (6) re-
duces to

O — G = 2upgz(1 ~ 1) + 28
@D uemi - 1)

(8)

The critical stress difference required for failure
depends on the orientation of the principal stress sys-
tem, as the latter affects the normal stress on potential
fracture planes. In order to predict occurrence and type
of faulting, therefore, the determination of principal
stress trajectories has to be followed by the determi-
nation of the stress difference as a function of position
(see the discussion by Buck 1990 and Yin 1990).

SLIP ALONG PRE-EXISTING STRENGTH
ANISOTROPIES

Now we assume that the rock contains planes of
weakness of orientation defined by the unit normal n of
components n; = cos y;, where y; is the angle between n
and the x-axis (Fig. 3). The traction vector t, acting on
the plane of weakness has components fy; = —oyn,,
tp = —0yn,, ty3 = —O3n3, and its magnitude is given by

)

The traction vector can be resolved into a normal and
shear component. The normal component, in a manner
analogous to equation (3), can be written as

5= 03n? + o%n3 + o3nl.

ag= (n% + 6n%)(01 — 03) + 03. (10)

The shear component can be obtained from the relation
7% =t} — o® which, after some algebra, yields

T = (01 — 03)[(nf + 6°n3) — (n} + Om3)’}V2. (11)
Thus the Coulomb-Navier criterion can be written as
(01 — 03)[(n] + 6%n3) — (nf + 6m3)°]"?

= So + pol(n} + 6n3)(0, — 03) + 05}, (12)
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where S, 1y are cohesion and coefficient of friction
along the anisotropy. (In general, both S and y, will be
less than the corresponding values in isotropic rock.
Although we choose 4 = u, in the examples that follow,
all relations are of general validity.) The minimum stress
03 can be expressed using equation (4) as

03 = pgz(1 — 1) — (01 — o3)(mi + 6m3).  (13)

Using equation (13) in (12) yields

gy —03=

topgz(1—2)+ Sy _
(3 + &n3) — (i + 651" + ol (it + 61) — (i + 6r53))

(14)

Equation (14), which reduces to the Andersonian case
of Ranalli & Yin (1990) if the plane of weakness contains
the o,-axis and one of the principal stress directions is
vertical, gives the critical stress difference for faulting
along a strength anisotropy as a function of depth,
material parameters, and orientation of stress field and
anisotropy. Examples are given in Fig. 4 for various
orientations of the anisotropy and different material
parameters.

At a given depth and for a given orientation of the
stress field, faulting will occur along a plane of weakness
only for a range of orientations, i.e. those for which the
critical stress difference given by equation (14) is less
than that given by equation (6). Outside this range, a
new fault forms at an angle @ = 4 tan™!(1/) with respect
to the oy-axis and containing the o,-axis. By equating
equations (14) and (6), the limiting angles can be ex-
pressed as

[n3 + 63 — (n + 6m3)*1'"2 — po(} + On3)
_wol U+ )" — ) pSo — oS
2u #(o1 = 03)’

(15)

where the stress difference (0, ~ ¢3) is given by equation
(6). For a given component n;, equation (15) allows
calculation of the ranges in the other two components
consistent with faulting along pre-existing anisotropies.
These reduce to the limiting angles given by Ranalli &
Yin (1990) for anisotropies containing the o0,-axis and
vertical orientation of one of the principal stresses.

A graphic representation of the limiting angles is
obtained by using the three-dimensional Mohr circle
(see e.g. Jaeger & Cook 1969, pp. 27-29). With refer-
ence to Fig. 5, the three circles of radii (o, — 03),
3(0, — 03) and ¥(0; — 0,) represent the stress states on
planes with unit normal with components n; =0,n, =0
and n; = 0, respectively, the other two components
being arbitrary in each case. Concentric circles (of which
only two families are shown in the figure, for simplicity)
represent stress states on planes on which a component
n; = cosy; is fixed. The two failure envelopes shown
apply to intact rock (parameters S,u) and strength
anisotropies (S, o). If for instance y, is given, one can
immediately read off the range in y, for which a plane of



240

0,-03 (MPa)
1] 100 200 300 400 500 600 700 800
0 L A A s i 1 A
2+
1 (a)
44 A
4 B
— e
£’
N g ¢
D

Z.-M. YN and G. RANALLI

0,- 03 (MPa)
200 300 400 500 600 700 800
vl A A A 'l i

7 B

C

12 A
14 \\

(b)

Fig. 4. Critical stress difference vs depth for faulting under a stress system of orientation «; = 60°, a; = 60°, az = 45°. (a) &

(b) and isotropic parameters as in Fig. 2. Anisotropy parameters S, = 5 MPa, uy = u. (A) New fault in isotropic rock; (B)

anisotropy with orientation y; = 55°, y» = 60°, y; = 50° (C) anisotropy with orientation y, = 70°, y, = 60°, y3 = 37°, (D)
most favourably oriented strength anisotropy (y, = 90° — ytan "' (V/uy). y5 = 0).

s

Fig. 5. Three-dimensional Mohr circle for failure in isotropic rock (envelope a) and along strength anisotropy (envelope

b). Dashed circles concentric with full circle with diameter o; — o5 represent stress states on planes with fixed y»; the other

family represents stress states on planes with fixed y,. For a given ya. the range of y; for which failure occurs along the

anisotropy can be read from envelope (b). For instance, for y, = 90°, the range of orientations is a = y; = b; for y, = 60°,
czy zdyand, fory, =45 ez y, =1

weakness fails. The range in y; can be calculated from
the condition that n is a unit vector, or read off from a
three-dimensional Mohr diagram on which all three
families of circles are drawn. Figure 6 gives some
examples of limiting angles for failure along strength
anisotropies as a function of depth for various values of
material parameters and orientation of the stress field.
(Note that the limiting angle shown is the angle g
between the plane of weakness and the g;-axis, while y,
above is the angle between the normal to the plane of
weakness and the ¢,-axis.)

OBLIQUE-SLIP FAULTING

When the stress orientation is Andersonian and the
fracture plane contains the intermediate stress direction,
faulting is of necessity either purely dip-slip or purely

strike-slip, and oblique-slip faulting (that is, with motion
direction on the fault plane which forms an angle differ-
ent from either 0° or 90° with the strike direction) does
not occur. However, when restrictions on the orien-
tation of both stress system and planes of weakness are
dropped, oblique-slip faulting becomes possible. On the
assumption that the direction of maximum shearing
stress and the direction of slip on the fault plane co-
incide, we analyse in this section the general non-
Andersonian case for anisotropic rocks (the Anderso-
nian case has been considered by Bott 1959; see also
Mandl 1988, pp. 203-206).

With reference to Fig. 7, let h be the unit strike vector
in the horizontal direction on the fault plane referred to
Cartesian co-ordinates coinciding with the principal
stress directions. The maximum shear stress on the fault
plane and its strike and dip components are denoted by
7, Ty,. and 74, respectively. The angle @ (measured in the
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Fig. 6. Limiting angle 8 between strength anisotropies and maximum principal stress (8 = 90° — ¥,) vs depth for slip along
the anisotropy. Values on curves denote the angle between anisotropy and intermediate principal stress. (a) o3 vertical,
A = 0; (b) o3 vertical, A = 0.4; (c) a; = 60°, @, = 60°, a3 = 45°, A = 0. Parameters as in Fig. 4.

Fig. 7. Resolution of shear stress 7 on fracture plane with normal n in

the principal stress system with axes (xj, x, x3) with respect to the

vertical m. The horizontal unit vector (along strike) is h. The strike and

dip component of shear stress are ry, and 74, respectively. The ‘rake

angle’ w gives the orientation of 7 (and consequently of slip) with
respect to the horizontal.

fault plane) giving the direction of 7, and therefore the
slip direction, with respect to strike, is the quantity that
we wish to express in terms of the orientation of the
stress system (defined by the unit vector m) and the
orientation of the fault plane (defined by the unit vector
n). We call o the ‘rake angle’ of slip. The signs of 7, and
14 are defined so that, if the unit vector n is upward, the
leftward direction of z,, and the upward direction of z4
are positive (as in Fig. 7); if the vector n is downward,
the leftward direction of 7;, and the downward direction
of 74 are positive. It follows that 0=n;=<1 and
—1 =m; = 1in each case.

Since the unit vector h is perpendicular to both n and
m we can write

hlnl + h2n2 + h3n3 = 0
hlml + h2m2 + h3m3 =0
W+ h3+ hi =
from which we obtain
hl =
My, — nipng
[(many — myna)? + (myng — many)* + (mpny — mymy)*172
(16a)

hy=
myns — mshy
[(many — monz)? + (muns — many)* + (mony — myny)*]™
(16b)

h3 =
mon, = miny
[(many — myns)? + (myns — many)* + (mpny — myny)’1
(16¢)
The strike component of the maximum shear stress is

given by 1, = ty- h, where t; is the traction vector acting
on the fracture plane; that is

T, = — 011y — Oanghy — O3nshs
and, using equations (16) and the identity o, =
o3 + (0, — 03),
= (01— &) [(nyn3ym, — mnyms) — 8(mpnzm, — mnyms)]
[(man, — myns)* + (myns — myn; )+ (mony — myny 172
)
The dip component is related to maximum shear stress

and strike component by the relation 73 =1>— 1.
Recalling equation (11) we can write

+ 62n%) - (n% + 6n§)2 -

ta= +(0y — 03) {(n}

[nnzm, —2n1n2m3 — O(npnsm; — n1n2m3)]2 ]1/2
(msny — monz)* + (myns — many)* + (myn; — myny)

(18)

Unlike equation (17), which gives both the magnitude
and the sign of 7, equation (18) gives only the magni-
tude of 74. The sign of 74 can be determined by the
product of the cosine of the angle between 7 and m and
the cosine of the angle between n and m, i.e.

cos (7, m) cos (n, m) =
(n3 + on3)(nym, + nym, + nyms)?
— (nymy + onymy)(nymy + nym, + nyms)
[(n + 6"n3) — (n + 0m3)']'"
If cos (7, m) cos (n, m) = 0, 74in equation (18) takes the
plus sign; otherwise it takes the minus sign.

(19)
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Fig. 8. Kinematic classification of faults based on the angle w between

the direction of slip and the horizontal. Purely normal, thrust and

strike-slip faults are denoted by N, T and S, respectively. Combi-

nations of letters denote oblique-slip faulting, with the first letter

referring to the predominant component of slip. Subscripts L and R
denote left-lateral and right-lateral slip, respectively.

The rake angle is therefore given by

tanw = ;—: =
((ni +6%n3) — (17 + 6n3)?][(man> — myns )’ 2
+ + (mny = many)? + (mony — myny)’] 1
B [nynamy — nynoms — 8(nynzmy — ”1’12’”3)]2
(20)

The value of the rake angle depends on the signs
of 7, and ;. For 7, >0, 13=0, 0°< @ <90°
for 1, =0, 74>0, 90°=w <180 for 1, <0,
14=0, 180°=w < 270°% and for 7, =0, 14 <0,
270° = w < 360°.

Equations (17), (18) and (20) give the strike com-
ponent, the dip component and the rake angle of the
maximum shear stress (and consequently the motion
direction) on the fault plane, for any orientation of stress
system and fault plane. Pure dip-slip and pure strike-slip
faulting are particular cases, depending for their occur-
rence on the vertical orientation of one principal stress
and either the absence or a particular orientation (con-
taining the o,-axis) of strength anisotropies. In all other
cases, faulting is oblique-slip.

A kinematic classification of faults, based on the value
of the angle w, is shown in Fig. 8. A similar classification,
for the special case of Andersonian stress systems, has
been given by Bott (1959), based on the relative values
of principal stresses.

EXAMPLES

In order to predict the possible types of faulting under
given conditions, we consider different cases separately.
For the formation of new faults in non-Andersonian
stress systems, the fracture plane contains the intermedi-
ate stress direction (n, = 0), and 7 + n3 = 1. Under
these conditions, equations (17), (18) and (20) reduce to

Z.-M. YN and G. RANALLI

normal faults

thrust fauits

S strike-slip fauits

normal and thrust faults

T wemm

strike-slip along
dipping planes

Fig. 9. Faulting regimes in 1sotropic rock as a function of the orien-
tation m of the stress system. In each field within the triangle, two
conjugate sets of faults are possible, as indicated. Normal, thrust and
strike-slip faults of Andersonian type occur only at the vertices. For
my = 0 (horizontal intermediate stress direction) and-mid-range values
of m, and m5, normal and thrust faults can coexist in conjugate sets.
Strike-slip along dipping planes can occur for a fixed m,/mj ratio.

nnzmy(o; — 03)

T, = 2la
" [myns — many)* + m2]'2 (21a)
(man — mnz)ngns(oy — 03)
S (21b)
[(miny — many)* + m3]'"*
tan @ = +BM T ity (21¢)

MA

By substituting the appropriate value for the critical
stress difference (i.e. equation 6 for the most general
case), the strike and dip components of the maximum
shear stress on the fault plane can be expressed in térms
of material parameters, depth and orientation of the
stress system.

The type of faulting along new fracture planes as a
function of the orientation of the stress system can be
determined from equations (21a)-(2lc). As m3 +
m3 + m3 = 1, it is convenient to display the results on a
triangular diagram, similar to the construction used in
petrology, where the co-ordinates m? of any point are
given by the distance from the side opposite to the
vertex, where m? = 1. Figure 9 shows the different types
of faulting in terms of the orientation of the stress
system. Each point in the diagram represents two poten-
tial conjugate fault planes, containing the intermediate
stress axis and making an angle 6 = tan™' (1/u) with
the maximum stress direction. Results are presented for
the case where, on a stereographic projection, the prin-
cipal stress axes, g,.0,, 03, are arranged in anticlock-
wise order; if they are arranged in clockwise order the
type of faulting does not change, but the sense of slip is
reversed. Naturally, oblique-slip faulting is the rule,
unless one principal stress direction is vertical or the
0»-axis is horizontal. Also, pure strike-slip along dipping
planes is possible. In situations where the orientation of
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Fig. 10. Faulting regimes in rocks under Andersonian stress systems containing strength anisotropies as a function of the

orientation n of the anisotropy. (a)—(c) refer to different vertical principal stress. Calculations are for z = 10km,

S =75MPa, S, = 5SMPa,u = up = 0.75, p=2600 kg m~3,1 = 0.4and 6 = }. The shaded areas denote values of n for which

new faults (of the type appropriate to the vertical principal stress) form. Faulting along pre-existing planes of weakness, with
slip as shown, occurs in the unshaded areas.

the stress system is known and the rock is isotropic,
diagrams such as the one shown in Fig. 9, together with
equations (21a)—(21c), allow the prediction of the fault
plane orientation and slip direction.

Next we examine the case of an Andersonian stress
system in rocks containing strength anisotropies (also
considered by Mandl 1988, pp. 203-206). Under these
conditions, new faults are pure dip-slip or strike-slip, but
oblique-slip faulting can occur along anisotropies if they
are favourably oriented. Three different faulting
regimes are possible.

If o0, is vertical (m; = £1, m, = m; = 0), equations
(17), (18) and (20) become

—(01 — 03)0nn3my

RN T e
+(oy — 21-0)+nd
Ta= (@ U(:)’r)lg{*[_n;é)l/z ) + ] (22b)
201 _ 2
tanw = trlnp(l = 9) + n3]. (22¢)

Onyn,
If 0, is vertical (m; = m; = 0, m, = £1), we have

— (01 — o3)nynamy

Nl &
+(0; — o3)ny[ni(1 — ) — onj
Ty = ( 1 3)()’1%25' lrfg)lﬂ ) 3] (23b)
(201 — 8 — Si2
tanw = o1 = 9) (5n3]. (23¢)
nqn3
Finally, if g5 is vertical (m; = m, = 0, m3 = +1)
(01 — g3)nnym3(6 — 1)
= 24
R R K 24)
+(0; — o3)ns(n? + on3
ra= 2@ (nﬂ ;é)f/z D ()
o (n? 2
tan o = Tna(ri + 0n3) (24¢)

nlnz(é - 1) )

SG 14:2-G

The above relations reduce to those for normal,
strike-slip and thrust faults, respectively, if faulting
occurs along a new fracture plane (n, = 0). However,
oblique-slip faulting takes place if favourably oriented
planes of weakness are present. The results can be
presented on triangular diagrams with co-ordinates n?.
Figure 10 illustrates both the limiting angles for faulting
along strength anisotropies and the faulting regimes.
(Note that the latter do not represent conjugate sets as in
the isotropic case, but favourable orientations of
strength anistropy along which a given type of slippage
would occur.) The limiting angles are a function of depth
(see equation 15); z = 10 km is the case shown. Faulting
along strength anisotropies does not occur in the shaded
areas where new faults form (normal, strike-slip or
thrust according to which principal stress direction is
vertical). Pure dip-slip and pure strike-slip faulting can
occur along strength anisotropies which contain the o;-
or o,-axis. In all other cases, faulting is oblique-slip. It
can also be seen that a broad range of orientation is
suitable for extensional reactivation, while a more re-
stricted range is suitable for reactivation in compression.

Faulting in the most general case of non-Andersonian
stress systems in rocks containing strength anisotropies
can be predicted using the general equations (17), (18)
and (20). However, the results cannot be simply pre-
sented on triangular diagrams.

CONCLUSIONS

The widespread occurrence of oblique-slip faults and
of faults having dip angles other than those predicted for
‘standard’ stress states are indications of the existence of
non-Andersonian stress systems and of fault reacti-
vation. However, a general theory of faulting in aniso-
tropic rocks under non-Andersonian stress systems has
not been formulated so far. In this paper, we have
provided simple expressions for the critical stress differ-
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ence for Coulomb-Navier shear fracture in both isotro-
pic rock and anisotropic rock as a function of material
parameters, pore fluid pressure, depth, orientation of
the stress field and orientation of anisotropies. These
expressions can be used in stress analyses, to comp-
lement the calculation of stress magnitude and trajec-
tories, in order to assess the likelihood of new faulting
and fault reactivation in a given tectonic environment
(see e.g. Yin 1989, and the discussion by Buck 1990 and
Yin 1990).

An expression has also been given for calculating the
limiting angles for failure for a strength anisotropy of
arbitrary orientation as a function of material para-
meters, pore fluid pressure, depth and orientation of the
stress field. This extends the previous two-dimensional
treatment by Ranalli & Yin (1990), and makes it poss-
ible to extend to three dimensions two-dimensional
analyses of fault reactivation and rotation (see e.g.
Sibson 1985, Nur er al. 1986, 1989, Ivins et al. 1990). In
this respect, it is interesting to note that the likelihood of
reactivation varies in different tectonic regimes.

With respect to oblique-slip faulting, explicit ex-
pressions have been given for dip and strike components
of the maximum shear stress and the slip direction on the
fault plane, in terms of critical stress difference (that is,
material parameters and depth) and orientations of
stress system and strength anisotropy, thereby extend-
ing previous analyses by Bott (1959) and Mandl (1988).

These results have been synthesized graphically by
means of triangular diagrams, where expected type of
faulting is given as a function of stress orientation (for
new fractures), or as a function of anisotropy orientation
(for slip along pre-existing faults). A variety of tectonic
environments, with their relevant faulting patterns, are
thus amenable to analysis on the basis of a simple direct
application of the Coulomb-Navier criterion.
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